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Abstract

Growing knowledge reveals the association between the gut microbiome and skin, rendering
the gut microbiome an appealing potential therapeutic target for atopic dermatitis (AD). In
this study, we assessed the effect of partially hydrolyzed guar gum (PHGG) on AD-like
symptoms induced by topical 1-Chloro-2,4-dinitrobenzene (DNCB) in BALB/c mice. Four
weeks of PHGG feeding prevented the loss of epidermal barrier integrity and epithelial
hyperplasia in the AD lesion (p < 0.05, effect size > 0.80), indicating a reduction in AD-like
symptoms. According to the postulated mechanism, PHGG ingestion modulates the gut
microbiome resulting in enhanced butyrate production (p < 0.05). Butyrate suppresses Th2
function in gut immunity, which is believed to have significance in systemic immune
regulation. The lowering of blood Th2 cytokines (IL-4 and IL-10, p < 0.05) in the PHGG-fed
group confirmed the existence of such a pathway, and butyrate can possibly be considered to
have an indirect involvement in the suppression of Th2 immune response in the AD lesions.
These findings encourage support for an association between gut microbiome and skin
through the immune system, implying that daily PHGG ingestion may be beneficial for

suppressing AD symptoms across the gut-immune-skin axis.
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Introduction

Atopic dermatitis (AD) is anticipated to occur in 20-30% of infants, 15-25% of children, and
5-10% of adults, with prevalence expected to increase.!V) It is a type I hypersensitivity with
symptoms such as sensitive and dry skin, eczematous lesions and itching sensations,
lowering patient’s quality of life and incurring a substantial socioeconomic cost.® Current
remedies include topical steroids, antihistamines, and immunomodulators.®4 However, AD
involves an array of causes, and existing alternatives to therapy are not effective for every
instance of AD. As a result, developing an innovative approach to combat AD remains
necessary.

The pathogenesis of AD is complex, and treatment targets are diverse.® The association
between gut bacteria and skin is referred as the “gut-skin axis” and has lately been
recognized as a potential therapeutic target.® The gut and harboring bacteria are known to
have intricate relationships with the systemic immune system, which implies they play a
vital role in the inception and/or progression of systemic medical conditions.® The
relationship between AD and gut bacteria has been debated for a relatively long time,
particularly in the context of hygiene hypotheses, and the significance of the gut microbiome
in the establishment of immune tolerance has been acknowledged.®

Multiple research investigations have demonstrated that prebiotics and probiotics may
alleviate AD, with one plausible possibilities involving increased production of short-chain
fatty acids (SCFA) in the gut.(19-12 Short-chain fatty acids are organic linear carboxylic acids
with six or fewer carbons, the majority of which are produced by gut bacteria during
anaerobic fermentation.'® Butyrate, in particular, is believed to be beneficial for improving
AD via the gut-skin axis due to emerging evidence of its anti-inflammatory properties.(14-16
Deficiencies of short-chain fatty acids or short-chain fatty acid-producing bacteria have been
identified in young children with AD and their relationship to AD development has been
reviewed.(171® As a result, increasing SCFA production in the gut could assist with alleviating
AD symptoms.

Partially hydrolyzed guar gum (PHGG) is a soluble dietary fiber with prebiotic properties,
including the stimulation of SCFA production in the gut.19-2D It is anticipated to help
maintain skin moisture, viscoelasticity and barrier function, in conjunction with the gut-skin

axis.?2.23 However, PHGG has never been evaluated for its effect on AD. Therefore, the



present research was undertaken using AD model mice in order to (i) investigate the effect
of PHGG on AD improvement and (ii) acquire insights into its probable mechanism

associated to the gut-skin axis.

Materials and Methods
Animal

The animal experiments in this work were approved by Mie University’s Ethical
Experimental Animal Committee (Approval number: 2022-7-MOD) and were carried out in
accordance to their guidelines as open-labelled.

Five-week-old female BALB/c mice (Japan SLC, Shizuoka Japan) were randomly separated
into three groups (Sham: sham treatment n=5, Control: AD model n=6, and PHGG: AD model
plus PHGG feeding n=6) having roughly comparable mean body weights. Sample size was
determined in consideration of other relevant studies minimizing the number of animals
used in this experiment.(11.29 The animals were kept at a controlled temperature (22+ 2 °C),
relative humidity (60£10%) and light (on/off at 8:00 and 20:00). Every group was housed in
one cage. Water and standard chow (AIN-93G, Oriental Bio-Service, Kyoto, Japan) were
readily available ad libitum. After a week of acclimatization, AD-like symptoms were elicited
using 1-Chloro-2,4-dinitrobenzene (DNCB), as previously reported.25-27

Briefly, all mice shaved their dorsal hair using electronic clippers before a day of
sensitization and continued to shave every two weeks under isoflurane anesthesia. DNCB
solution was prepared by dissolving in fresh acetone and olive oil (3:1) solution at 1% (w/v)
for the first sensitization and 0.5% (w/v) for the subsequent challenge. The DNCB challenge
entailed applying 100 pl of the solution topically to the dorsal skin and 10yul to the both side
of the ear twice per week until the end of the experiment for the Control and PHGG group.
Instead of DNCB solution, sham mice received an acetone and olive oil (3:1) solution. After
the three weeks of the DNCB challenge, the PHGG group received only modified AIN-93G
(5% PHGG instead of 5% cellulose; PHGG is commercially provided as Sunfiber by Taiyo
Kagaku Co., Ltd., Mie, Japan) in place of standard AIN-93G. The dose of PHGG was
determined to be sufficient to expect a prebiotic effect based on other rodent studies using
PHGG.282) The DNCB challenge persisted for a further four weeks for all mice. The brief
procedure is summarized in Figure 1.

Dermatitis score and skin trans epidermal water loss (TEWL) were assessed on a regular
basis, as described below. Fresh fecal pellets were collected before and four weeks after PHGG
feeding and stored at -80 °C for estimating fecal IgA concentration. At the end of the breeding
program (three days after final DNCB challenge), all mice were euthanized under isoflurane

anesthesia.



The Body and spleen weight were measured using a digital scale. Blood was drawn from the
inferior vena cava, and serum was collected using Separapid tube (Kenis, Osaka, Japan).
Serum was stored at -80 °C. An electric micrometer was applied to measure the thickness of
both ears and the lesion of stripped dorsal skin, which was then fixed with neutral formalin
for histological evaluation. The cecal content was collected and stored at -80 °C for analysis

of microbiome and organic acids.

Evaluation of dermatitis score and TEWL measurement

The severity of AD symptoms was subjectively assessed using a clinical scale ranging from
0 (no symptoms) to 3 (severe symptoms) for the following items : erythema/hemorrhage,
edema, excoriation/erosion, and scaling/dryness.3® The dermatitis score is defined as the
aggregate of those scores (minimum 0, maximum 12). Those evaluations were performed
throughout the final four weeks of breeding program (three times per week and once in week
seven).

The TEWL of dorsal skin was measured before, two, and four weeks after PHGG feeding
using a tewameter (Integral Corporation, Tokyo, Japan) following the manufacturer's
protocol. To prevent distress and unexpected injury from restraints, TEWL

measurements were performed under isoflurane anesthesia.

Histology

Formalin-fixed skin tissues from the dorsal skin and right ear were embedded in paraffin
and sliced into 5 pm sections.

The sections were stained with hematoxylin and eosin (H&E) to assess epithelial structure.
A bright-field microscope equipped with a digital camera was employed to capture three and
five randomly selected scope fields in the dorsal skin and right ear respectively. The
epidermal thickness was measured at three distinct locations per image using the software
Imaged 2/Fiji (v2.9.0).

The sections from the same paraffin block were stained with 0.05% toluidine blue solution
(pH4.1) for mast cell counting. As previously stated, two or three random scope fields were
captured. The mast cell population was counted more than twice in each image, and the area
of skin tissue was measured using the Imaged2/Fiji software to estimate the mast cell

number per unit area (cells/mm?2).

Fecal Immunoglobulin A
To dissolve fecal pellets, 10 mg was measured and dissolved 100-fold with 1x Protease

Inhibitor Cocktail Set I (Wako, Osaka, Japan). After the 20 minutes of incubation at 4 °C, the



fecal pellet was crushed with a clean pipet chip, vortexed, and incubated for an additional 40
minutes at 4 °C. Centrifuged at 12,000xXg and the supernatant was diluted 10-fold with pure
water just before the ELISA assay. The IgA Mouse Uncoated ELISA Kit with Plates (Thermo
Fisher Scientific, Tokyo, Japan) was used to measure IgA concentration of the samples

following the manufacturer’s protocol.

Serum IgE and cytokines

Serum IgE was measured using a commercially available kit following the manufacturer’s
instructions (Mouse IgE ELISA Kit, Bethyl Laboratories, Inc., Texas).

The RayPlex Mouse Inflammation Array 1 Kit (RayBiotech, GA, USA) was used to measure
serum levels of G-CSF, IFNy, IL-18 (IL-1 F2), IL-2, IL-4, IL-6, IL-10, IL-12 p70, IL-17, IL-23
p19, KC (GROa, CXCL1), MCP-1 (CCL2) and TNFa using a BD Accuri C6 flow-cytometer
(BD Bioscience, Tokyo, Japan).

Cecal microbiome and organic acids

Cecal DNA was extracted using the QuickGene DNA tissue kit S (KURABO, Osaka, Japan)
according to the manufacturer’s protocol. DNA fragmentation and library preparation were
performed using NEBNext Ultra II FS DNA Library Prep Kit for Illumina and NEBNext
Multiplex Oligos for Illumina (Dual Index Primers Set 1) (New England Biolabs, Tokyo,
Japan) following the manufacturer’s protocol procedure for > 100 ng DNA inputs. AMpure
XP beads (Beckman Coulter, Tokyo, Japan) was employed for the size selection and library
cleanup process.

The size and concentration of each library were determined using the Bioanalyzer 2100
(Agilent Technologies Japan, Tokyo) with the High Sensitivity DNA kit (Agilent Technologies
Japan), following that all libraries were pooled in equimolar amounts. The pooled library was
submitted to Rhelixa (Tokyo, Japan) for sequencing data (150-bp paired-end) from
the NovaSeq X Plus system (Illumina, San Diego, CA, USA).

Fastp®D was used to filter low-quality reads with length < 50 base and phred score < Q20.
The qualified reads were processed using SqueezeMeta (v1.6.2)8?, an automated
metagenomic analysis pipeline. The de novo co-assembly was performed using megahit®3.
The R package vegan (v2.6-6.1) was used to conduct diversity analysis. The pairwise-
permutational multivariate analysis of variance test was used to compare Bray-Curtis
dissimilarity with R package pairwiseAdonis (v0.4.1).

TPM normalized KEGG orthology count data was compared with R package maaslin3
(v0.99.0). KEGG orthologies with q < 0.05 and |log2 fold change| > 1 were considered



significantly different. KEGG enrichment analysis was conducted with MicrobiomeProfiler
(v1.11.1) with significantly different KEGG orthology between Control and PHGG group.
KEGG pathways with q < 0.05 were considered significantly different between the groups.
The concentrations of cecal organic acids (succinate, lactate, formate, acetate, propionate,
butyrate, isobutyrate, valerate, and isovalerate) were determined using ion-exclusion high-

performance liquid chromatography, as previously reported.4

Statistical analysis

All data are presented as means + SEM. A one-way analysis of variance (ANOVA) followed
by Tukey's HSD test were used for multiple group comparisons. Effect size (Hedge’s g) was
calculated R package effsize (v0.8.1). Unless otherwise noted, all statistical analyses were
performed using R software (v4.2.0). The p-values < 0.05 were considered significant. The

effect sizes g > 0.80 were considered as large.

Results

PHGG reduced the exacerbation of AD-like symptoms induced by continuous DNCB
challenge

The mice’s body weight increased throughout the experiment, but there was no significant
difference between the groups (Fig. 2a). Dermatitis score and TEWL were significantly higher
in the DNCB-challenged groups (Control and PHGG) compared with the Sham group, and
which was exacerbated by continuous DNCB challenge (Fig. 2b-c). However, dermatitis
scores were significantly lower in the PHGG group than in the Control group at one, three
and four weeks after PHGG feeding (Fig. 2b, g =1.73, 1.73, 1.42 respectively). TEWL revealed
the same pattern as dermatitis scores, and were significantly lower in the PHGG group than

in the Control following PHGG feeding (Fig. 2¢, g = 2.06 and 2.03 at week two and four).

The tissue thickness of the dorsal skin and right ear were significantly greater in the DNCB
challenged groups than in the Sham group, whereas there was no significant difference in
the left ear (non-DNCB challenged area) across groups (Fig. 2d). Although not statistically
significant, the dorsal skin, right ear and tissue thickness difference between right and left

ears appeared to be thinner in the PHGG group than in the Control group (Fig. 2d).

The histological evaluation showed that epidermal tissue in the lesions (dorsal skin and
right ear) were significantly thicker in the DNCB challenged groups than in the Sham due
to cell hyperplasia, although the PHGG group demonstrated significant reduction of



hyperplasia compared to the Control (Fig. 3a-b, g = 3.61 and 2.48 in dorsal skin and right
ear). The number of mast cells per unit area in the lesions was significantly increased in the
DNCB-treated groups compared to the Sham, whereas it was reduced in the PHGG group

compared to Control, albeit non-significant (Fig. 3c-d).

DNCB challenge altered the immune profile and PHGG feeding partially suppressed it

The DNCB challenge significantly increased the weight of the spleen, a key lymphoid organ.
However, the increase dropped in the PHGG group compared to the Control group, with a
trend to significance (p < 0.10, Fig. 4a). The DNCB challenge similarly significantly elevated
serum IgE levels, but that were lower in the PHGG group than in the Control (Fig. 4b). Some
of serum cytokine concentrations (IL-4 and TNFa) were significantly higher in the Control
group compared to the Sham group (Fig. 4d). The PHGG group had significantly lower levels
of IL-10 and IL-4 than Control group (Fig. 4d). The serum IFNy concentration was not shown

since the obtained values were outrange of the standard curve.

The amount of fecal IgA, an antibody related to the gut mucosal immunity, was not different
between groups before PHGG feeding but significantly increased after four weeks of PHGG
feeding compared to other groups (Fig. 4c).

PHGG feeding changed the microbiome to a state rich in butyrate production

The bacterial profile and function of the cecal microbiome were analyzed using whole
genome shot-gun sequencing. The analysis excludes the sequence reads from hosts, viruses,
eukaryotes or unmapped on any of the reference genomes. The alpha diversity indices of the
microbiome revealed no significant variation (Table S1). However, the PHGG group indicated
a significantly different microbiome composition compared to the Sham and Control groups
in the beta diversity analysis (Fig. 5a).

A comparison of the relative abundance of each bacteria revealed that the abundances of 13
phyla and 135 genera differed significantly between groups (Table S2, Table S3). PHGG
feeding was characterized by significant increase in genera such as Bacteroides,
Bifidobacterium, and Parabacteroides as well as significant decrease in Desulfovibrio, Dorea,
and Mucispirillum among relatively abundant bacteria (>1%, Fig. 5b).

In the cecal organic acid, characteristic cecal bacteria metabolites butyrate and succinate
significantly increased by PHGG feeding, while certain organic acids (isobutyrate and
formate) were significantly lower in the PHGG group than in the Control group (Fig. 5¢, Table
S4). We anticipated that the key enzymes involved in PHGG degradation were a-

galactosidase and mannan endo-B-1,4-mannosidase and compared the abundances of



bacteria having those genes.(5.36) The bacterial abundances with those genes in the PHGG
group were significantly higher than in the Control (Fig. 6a). PHGG feeding significantly
enhanced the abundance of ten genera having a-galactosidase gene, including Acutalibacter,
Bifidobacterium, and Parabacteroides (Fig. 6b,Table S5). PHGG feeding also significantly
enhanced four bacterial genera having mannan endo-B8-1,4-mannosidase gene, including

Acutalibacter and the Lachnospiraceae family (Fig. 6b, Table S6).

The KEGG enrichment analysis (Fig. 6c, TableS7) similarly indicated increased PHGG
utilization, with upregulation of the “Starch and sucrose metabolism” and “Fructose and
mannose metabolism” pathways in the PHGG group. However, “Galactose metabolism”
pathway was downregulated in the PHGG group. Some pathways related to the SCFA
production (“Pyruvate metabolism”, “Carbon metabolism”, “Fatty acid biosynthesis”,

“Propanoate metabolism”) were also upregulated in the PHGG group.

Discussion

The hapten-induced AD animal model used in this study is extensively used in preclinical
studies because of its efficiency and reproducibility.®7.39 Although the model utilized in this
experiment does not precisely reflect the pathophysiology of AD, the negative spiral of
inflammation generated by allergen infiltration and disruption of the epidermal barrier by
scratching is well demonstrated, and it is regarded as a reasonable animal model of AD.3?
Since the majority of the Japanese AD population exhibits mild to moderate AD
symptoms®249, we designed this DNCB challenge approach to assess the significance of
PHGG in AD with such severity. As intended, AD-like symptoms in this study was moderate,

considering the dermatitis score of other study using DNCB-induced mouse AD model.27:41:42)

PHGG feeding preserved skin barrier function and minimized skin thickening induced by
epidermal hyperplasia, implying that AD-like symptoms were suppressed. One of the
mechanisms is thought to be a lowering of Th2 response-associated inflammation, as shown
in lower levels of serum Th2 cytokines (IL-4 and IL-10).

The essential function of IL-4 in AD is well documented, and its stimulation has been
demonstrated to result in increased Th2 differentiation and IgE class switch in B cells.“3 IgE
produced by B cells promotes mast cell degranulation and causes itch-scratching behavior,
which leads to epidermal barrier dysfunction and local inflammation, as witnessed in AD.

Therefore, dupilumab (anti-IL-4Ra) received approval by the FDA in 2017 as a first biologic
medication for AD therapy“?, highlighting the importance of decreasing IL-4 signaling.“®



IL-10 has anti-inflammatory activity, although it has been appears to be elevated in the
peripheral blood of AD patients.4647 IL-4 has been reported to elevate IL-10 expression of
Th2 cells, and the low IL-10 levels in the PHGG group in this study might be attributed to

IL-4 suppression.3.48)

Butyrate, one of the gut bacteria-derived metabolites evaluated in this study, is likely to
contribute to the suppression of AD-like symptoms. Several studies have revealed that
increased gut butyrate and local IL.-4 suppression in the skin lesion occur concurrently with
the amelioration of AD symptoms.“®-5) Butyrate has been reported to suppress NFxB
activation®, and is expected to contribute to the suppression of inflammation in skin
lesions.?% However, butyrate concentrations in the circulation and peripheral tissues have
been reported as quite low (maximum 100 uM in mouse circulation)®?, implying that its
direct therapeutic influence in AD lesions is probably constrained. Since gut butyrate
concentration is quite higher than peripheral tissues (2-10 mM in this study), and gut
immune system performs an essential role in the regulation of the systemic immune
system®¥, it is likely that the AD improvement by butyrate is derived indirectly via
regulation of gut immune system. The increased fecal IgA accompanied by increased cecal
butyrate, which is consistent with previous findings®45%, supports the modulatory effect on
the gut immune system by PHGG.

Butyrate has been demonstrated to inhibit Th2 cytokine production®® and suppress Th2
differentiation via modulating dendritic cell activation in the gut immune system.5?
Therefore, it is suggested that the regulative effect of butyrate on Th2 function in the gut
immune system influenced the systemic immune system, resulting in suppression of Th2-
mediated inflammation in the skin. Although several studies indicate immuno-modulatory
effect of butyrate is accompanied by an elevation in I1.-104957.58 TL-10 does not appear to be
necessarily involved, as butyric acid have been demonstrated to possess an anti-
inflammatory effect even in IL-107 mice.9:60)

Since the exact molecular pathways have not yet been comprehensively elucidated,
additional investigation is necessary for understanding how butyrate regulates the

immunological response to AD via the gut immune system.

It is anticipated that the increase in PHGG-degrading gut bacteria contributed to the
increase in butyrate production. Gut bacteria uses a-glalactosidase and/or mannan endo-8-
1,4-mannosidase to degrade PHGG, yielding monosaccharides and oligosaccharides which
can be utilized as carbon sources. As a result, these carbon sources can be used to metabolize

SCFA via cross-feeding®?, monosaccharides, and oligosaccharides obtained from PHGG
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breakdown likely aided in the production of butyrate. Consequently, an increase in
prospective PHGG degraders such as Acutalibacter, Bifidobacterium, and Parabacteroides
can be considered significant contributors to enhanced butyrate production. Parabacteroides,
in particular, is a well-known as fiber degrader, and reported that its increase of abundance
enhances SCFA production.®? KEGG enrichment analysis also demonstrated higher PHGG
utilization in the PHGG group, and those gut bacteria appear to prefer mannose as a carbon
source over galactose. The “Butanoate metabolism” pathway was not directly enriched in
PHGG group, but associated pathways such as “Carbon metabolism” and “Fatty acid

biosynthesis” are believed to have contributed to enhanced butyrate generation.

Conclusion

DNCB-induced AD like symptoms were reduced after four weeks of PHGG feeding. In the
hypothesized mechanism of this study, enhanced gut butyrate resulting from prebiotic effect
of PHGG could be regarded as a key metabolite for AD improvement. Butyrate has already
been demonstrated to reduce Th2 differentiation and Th2 cytokine production in the gut
immune system, suggesting that it may be implicated in immuno-modulation in AD lesions
indirectly. Although specific mechanisms remain to be investigated, the prebiotic effect of
PHGG on the immune system, as part of the gut-immune-skin axis, is anticipated to help
alleviate AD symptoms. On The other hand, considering the complexity of AD etiology,

further research including human clinical trial is needed to elucidate its efficacy on AD.
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Supplementary Materials

Table S1: Alpha diversity indices of cecal microbiome; Table S2: Bacterial relative
abundance (%) that significantly different between groups at phylum level; Table S3:
Bacterial relative abundance (%) that significantly different between groups at genus level;
Table S4: Cecal organic acids; Table S5: Bacteria with a-glucosidase gene (%) that
significantly different between groups at genus level; Table S6: Bacteria with mannan endo-
B-1,4-mannosidase gene (%) that significantly different between groups at genus level; Table

S7: Enriched KEGG pathways in microbiome of PHGG group.

Figure Legends

Figure 1. Brief procedure of animal experiment.

Figure 2. Features of PHGG feeding on the DNCB induced AD-like symptoms. Sham (n=5),
Control (AD model, n=6), PHGG (AD model + PHGG feeding, n=6). (a) Body weights
throughout the experimental period. (b) Dermatitis scores or (c) TEWL values after the
PHGG feeding. (d) Tissue thicknesses of the final day of experimental period. Ear (Right-
Left) means the difference of tissue thickness between right ear (lesion) and left ear (non-
lesion). The significance of the value was determined by Tukey’s HSD after a one-way ANOVA
and indicated by (b-c) different letters or (d) *p<0.05.

Figure 3. PHGG feeding prevented skin epithelial hyperplasia related to DNCB induced AD-
like symptoms. Sham (n=5), Control (AD model, n=6), PHGG (AD model + PHGG feeding,
n=6). (a) Representative H&E stained tissue section (200x) and (b) measured epidermal
thickness. (c) Representative toluidine blue stained tissue section (400%) and (d) counted

mast cell number per unit area. The significance of the value was determined by Tukey’s HSD

after a one-way ANOVA (*p<0.05).

Figure 4. Immunological parameters were altered by both of DNCB challenge and PHGG
feeding. Sham (n=>5), Control (AD model, n=6), PHGG (AD model + PHGG feeding, n=6). (a)
Percentage of spleen weight to body weight. (b) Serum IgE concentration. (¢c) Amount of fecal
IgA before and after PHGG feeding. (d) Serum cytokine concentrations (KC : CXCL1). The
significance of the value was determined by Tukey’s HSD after a one-way ANOVA (¥*p<0.05).

Figure 5. Cecal bacteria composition and its organic acid production were affected by PHGG
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feeding. Sham (n=5), Control (AD model, n=6), PHGG (AD model + PHGG feeding, n=6). (a)
Principal coordination analysis (PCoA) plot based on Bray-Curtis dissimilarity. The
composition was significantly different in the PHGG group compared to the Sham and
Control (p<0.05, pairwise:PERMANOVA). (b) Bacterial relative abundance that significantly
different between groups at genus level. Bacteria were displayed if the genus could be
identified and the relative abundance was greater than 1%. (c) Cecal organic acid
concentrations. Major SCFA (Acetate, Propionate and Butyrate) and organic acids with
significant difference were displayed. (b-e) The significance of the value was determined by

Tukey’s HSD after a one-way ANOVA (*p<0.05) unless otherwise specified.

Figure 6. The function of cecal microbiome was shifted by PHGG feeding to the state high in
PHGG degradation and SCFA production. Sham (n=>5), Control (AD model, n=6), PHGG (AD
model + PHGG feeding, n=6). (a) Relative abundance of total bacteria with a-glucosidase (EC
3.2.1.22) or mannan endo-B-1,4-mannosidase (EC 3.2.1.78) gene. (b) Bacterial genus with a-
glucosidase or mannan endo-B-1,4-mannosidase gene that significantly increased with PHGG
feeding. (a-b) The significance of the value was determined by Tukey’s HSD after a one-way
ANOVA (*p<0.05) unless otherwise specified. (c) KEGG pathway enrichment analysis of gut
microbiome. KEGG orthology of gut microbiome was compared between Control vs PHGG
groups. Count is the number of KEGG orthology enriched in the pathway. Regulation
(Up/Down) was displayed as the characteristics of PHGG group compared to the Control
group. Pathways with significant difference (q<0.05) are displayed but those having both Up

and Down regulated genes together were excluded.



19

BALB/cfemale 5 week old

Z DNCB challenge
Sensitization (1% DNCB: Dinitrochlorobenzene)
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Groups: Sham (non-DNCB challenged, n=5)
Control (DNCB challenged AD model, n=6)
PHGG (AD model with PHGG diet, n=6)

Figure 1. Brief procedure of animal experiment.
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Figure 2. Features of PHGG feeding on the DNCB induced AD-like symptoms. Sham (n=5), Control (AD model, n=6),
PHGG (AD model + PHGG feeding, n=6). (a) Body weights throughout the experimental period. (b) Dermatitis scores
or (c) TEWL values after the PHGG feeding. (d) Tissue thicknesses of the final day of experimental period. Ear
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Control (AD model, n=6), PHGG (AD model + PHGG feeding, n=6). (a) Principal coordination analysis (PCoA) plot
based on Bray-Curtis dissimilarity. The composition was significantly different in the PHGG group compared to the
Sham and Control (p<0.05, pairwise-PERMANOVA). (b) Bacterial relative abundance that significantly different
between groups at genus level. Bacteria were displayed if the genus could be identified and the relative abundance
was greater than 1%. (¢) Cecal organic acid concentrations. Major SCFA (Acetate, Propionate and Butyrate) and
organic acids with significant difference were displayed. (b-e) The significance of the value was determined by

Tukey’s HSD after a one-way ANOVA (*p<0.05) unless otherwise specified.
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Figure 6. The function of cecal microbiome was shifted by PHGG feeding to the state high in PHGG degradation
and SCFA production. Sham (n=5), Control (AD model, n=6), PHGG (AD model + PHGG feeding, n=6). (a) Relative
abundance of total bacteria with a-glucosidase (EC 3.2.1.22) or mannan endo-8-1,4-mannosidase (EC 3.2.1.78) gene.
(b) Bacterial genus with a-glucosidase or mannan endo-8-1,4-mannosidase gene that significantly increased with
PHGG feeding. (a-b) The significance of the value was determined by Tukey’s HSD after a one-way ANOVA (¥*p<0.05)
unless otherwise specified. (c) KEGG pathway enrichment analysis of gut microbiome. KEGG orthology of gut
microbiome was compared between Control vs PHGG groups. Count is the number of KEGG orthology enriched in
the pathway. Regulation (Up/Down) was displayed as the characteristics of PHGG group compared to the Control
group. Pathways with significant difference (q<0.05) are displayed but those having both Up and Down regulated

genes together were excluded.
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Table S1. Alpha diversity indices of cecal microbiome

One-way
Index Sham Control PHGG ANOVA p-value
Chao1l 221.6+2.3 219.2+1.3 214.8+2.3 0.086
Shannon 3.02+0.02 2.93+£0.05 2.90+0.05 0.152

Table S2. Bacterial relative abundance (%) that significantly different between groups at phylum level

One-way ANOVA Tukey HSD p-value

Phylum Sham Control PHGG p-value Shaml vs Control Control vs PHGG Sham vs PHGG
Actinobacteria 0.258+0.022 0.235+0.034 4.026+1.428 0.011 >0.999 0.019 0.026
bacterium 0.1xD8-71 (no phylum in NCBI) 0.00014+0.00003 0.00035+0.00006 0.00001+0.00001 <0.001 0.004 <0.001 0.067
bacterium 1XD21-13 (no phylum in NCBI) 0.00136+0.00019 0.00193+0.00012 0.00536+0.00116 0.003 0.852 0.010 0.005
bacterium 1xD42-67 (no phylum in NCBI) 0.022+0.002 0.030+0.001 0.020£0.003 0.022 0.109 0.021 0.739
bacterium 1XD42-76 (no phylum in NCBI) 0.00039+0.00005 0.00051+0.00009 0.00010+0.00005 0.002 0.446 0.002 0.026
bacterium 1xD42-87 (no phylum in NCBI) 0.00107+0.00010 0.00184+0.00040 0.00019+0.00010 0.001 0.132 0.001 0.082
bacterium 1xD8-48 (no phylum in NCBI)  0.00102+0.00011 0.00230+0.00035 0.00127+0.00027 0.013 0.016 0.043 0.807
bacterium c-19 (no phylum in NCBI) 0.00040+0.00006 0.00034+0.00009 0.00174+0.00038 0.001 0.985 0.002 0.005
bacterium D16-50 (no phylum in NCBI) 0.00404+0.00069 0.00297+0.00020 0.00239+0.00029 0.044 0.205 0.567 0.036
Candidatus Saccharibacteria 0.01560+0.00479 0.00016+0.00006 0.00748+0.00295 0.011 0.008 0.216 0.184
Candidatus Sumerlaeota 0.00001+0.00001 0.00003+0.00001 ND 0.008 0.144 0.006 0.307
Deferribacteres 2.921+0.666 2.195+0.345 0.124+0.108 0.001 0.443 0.006 0.001
Proteobacteria 7.762+0.316 7.510£0.593 3.762+0.495 <0.001 0.935 <0.001 <0.001

ND = Not detected
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One-way Tukey HSD p-value
Genus Sham Control PHGG ANOVA p-value Sham vs Control _Control vs PHGG _Sham vs PHGG
Acetatifactor 0.04477+0.00349 0.0486+0.00359 0.01802+0.00162 <0.001 <0.001 <0.001
Acetobacter 0.000042+0.000019 0.000003+0.000003 0.022 0.029 0.966 0.046
Acutalibacter 0.2887+0.03173 0.35114+0.05192 1.74833+0.24595 <0.001 0.958 <0.001 <0.001
Alistipes 0.89548+0.08068 0.53789+0.11787 0.03033+0.00204 <0.001 0.025 0.001 <0.001
Alkaliphilus 0.00001+0.00001 0.00004+0.00001 ND 0.019 0.163 0.015 0.504
Alphaproteobacteria bacterium (no genus in NCBI)  0.002193+0.00101 0.000012+0.000004 0.000008+0.000003 0.015 0.025 >0.999 0.025
Anaerobium 0.000017+0.000005 0.001027+0.000101 0.00001+0.000004 <0.001 <0.001 <0.001 0.996
Anaerocaecibacter 0.0607+0.00816 0.07029+0.01861 0.00457+0.00216 0.003 0.851 0.004 0.017
Anaeromassilibacillus 0.00311+0.00043 0.00394+0.00053 0.00609+0.00109 0.045 0.747 0.146 0.047
Anaerostipes ND 0.000001+0.000001 0.000066+0.000022 0.005 0.998 0.009 0.011
bacterium 0.1xD8-71 (no genus in NCBI) 0.00014+0.00003 0.00034+0.00006 0.00001+0.00001 <0.001 0.004 <0.001 0.07
bacterium 1XD21-13 (no genus in NCBI) 0.00133+0.00018 0.00188+0.00012 0.00521+0.00113 0.003 0.852 0.011 0.005
bacterium 1xD42-67 (no genus in NCBI) 0.02181+0.00241 0.02908+0.00146 0.01912+0.003 0.024 0.122 0.022 0.718
bacterium 1XD42-76 (no genus in NCBI) 0.00038+0.00005 0.0005+0.00009 0.0001+0.00004 0.002 0.45 0.002 0.027
bacterium 1xD42-87 (no genus in NCBI) 0.00104+0.0001 0.0018+0.0004 0.00019+0.0001 0.002 0.137 0.001 0.086
bacterium 1xD8-48 (no genus in NCBI) 0.001+0.0001 0.00224+0.00034 0.00123+0.00027 0.013 0.018 0.041 0.834
bacterium c-19 (no genus in NCBI) 0.00039+0.00006 0.00034+0.00009 0.00168+0.00038 0.002 0.985 0.003 0.006
bacterium D16-50 (no genus in NCBI) 0.00395+0.00067 0.00291+0.0002 0.00229+0.00029 0.039 0.207 0.525 0.032
Bacteroidaceae bacterium (no genus in NCBI) 0.62325+0.08322 0.39596+0.08585 0.00746+0.00093 <0.001 0.083 0.002 <0.001
Bacteroidales bacterium (no genus in NCBI) 0.03574+0.0061 0.0395+0.00647 0.00169+0.001 <0.001 0.865 <0.001 0.001
Bacteroides 6.02683+0.63307 5.95094+1.4034 11.33966+1.52493 0.016 0.999 0.025 0.035
Barnesiella 0.00044+0.00004 0.00031+0.00007 0.00098+0.00014 0.001 0.621 0.001 0.007
Bifidobacterium 0.22057+0.01654 0.20557+0.03298 3.58543+1.35888 0.017 >0.999 0.027 0.036
Butyricicoccus 0.01828+0.00251 0.02682+0.00286 0.0125£0.00275 0.007 0.114 0.005 0.339
Butyricimonas 0.05222+0.00588 0.05042+0.01056 0.01781+0.00466 0.01 0.986 0.021 0.02
Candidatus Coproplasma 0.00003+0.00001 ND ND 0.001 0.002 >0.999 0.002
indidatus Saccharibacteria bacterium (no genus in NC/| 0.00089+0.00029 0.00001+0.00001 0.00062+0.00023 0.023 0.023 0.105 0.633
Clostridium 0.07696+0.0222 0.00521+0.00034 0.00509+0.00041 0.001 0.001 >0.999 0.001
Colidextribacter 0.02261+0.0022 0.03677+0.00119 0.00779+0.00065 <0.001 <0.001 <0.001 <0.001
Collinsella 0.00007+0.00002 0.00005+0.00001 0.00025+0.00003 <0.001 0.818 <0.001 <0.001
Coprococcus 0.00165+0.00018 0.00173£0.0002 0.00056+0.00008 <0.001 0.927 <0.001 0.001
Desulfovibrio 7.1773£0.29704 6.93874+0.56711 3.13338+0.46383 <0.001 0.935 <0.001 <0.001
Desulfovibrionaceae bacterium (no genus in NCBI) 0.00171+0.00043 0.00113+0.00017 0.00056+0.00003 0.018 0.256 0.233 0.014
Dorea 1.37282+0.06396 1.74012+0.17988 0.87318+0.10151 0.001 0.163 0.001 0.047
Edwardsiella 0.00015+0.00004 0.00009+0.00002 0.00005+0.00001 0.043 0.223 0.526 0.035
Eggerthella 0.000019+0.000009 0.000007+0.000002 0.000232+0.000044 <0.001 0.947 <0.001 <0.001
Eggerthellaceae bacterium (no genus in NCBI) 0.00018+0.00004 0.0001+0.00002 0.00307+0.0004 <0.001 0.971 <0.001 <0.001
Emergencia 0.00012+0.00003 0.00007+0.00002 0.00041+0.00011 0.006 0.887 0.008 0.026
Enterocloster 0.00233+0.00029 0.00357+0.00022 0.00115+0.00021 <0.001 0.007 <0.001 0.01
Enterorhabdus 0.00165+0.00024 0.00122+0.00008 0.02655+0.00357 <0.001 0.99 <0.001 <0.001
Erysipelotrichaceae bacterium (no genus in NCBI) ND ND 0.00004+0.00002 0.02 >0.999 0.033 0.042
Evtepia 0.00048+0.00004 0.00059+0.00003 0.00159+0.00011 <0.001 0.578 <0.001 <0.001
Faecalibacterium 0.000038+0.00001 0.000276+0.000015 0.000008+0.000002 <0.001 <0.001 <0.001 0.155
Faecalibaculum 0.19259+0.03916 0.13656+0.02377 0.80194+0.20971 0.004 0.953 0.006 0.016
Faecalicatena 0.000007+0.000005 0.000009+0.000001 0.00009+0.000028 0.007 0.998 0.013 0.015
Feifania 0.000036+0.000009 0.000034+0.000004 0.000003+0.000002 0.001 0.967 0.002 0.002
Firmicutes bacterium (no genus in NCBI) 0.02641+0.00319 0.02267+0.00168 0.01215+0.00157 0.001 0.466 0.008 0.001
Flintibacter 0.03154+0.00215 0.03061+0.00118 0.04347+0.00437 0.013 0.974 0.019 0.037
Fournierella 0.000006+0.000002 0.000012+0.000006 0.000077+0.00003 0.034 0.973 0.065 0.054
Fumia 0.000004+0.000004 ND 0.00003+0.00001 0.009 0.926 0.012 0.032
Gemella 0.01002+0.00246 0.0163+0.00345 0.00574+0.00123 0.03 0.241 0.025 0.496
Gilliamella 0.0003+0.00006 0.00019+0.00003 0.00008+0.00001 0.002 0.093 0.109 0.002
Gordonibacter ND ND 0.00005+0.00001 <0.001 >0.999 <0.001 <0.001
Hydrogenoanaerobacterium 0.000016+0.000005 0.000019+0.000006 0.000001+0.000001 0.038 0.887 0.041 0.12
Intestinimonas 0.00335+0.00033 0.00231+0.00041 0.00087+0.00039 0.002 0.183 0.042 0.001
Klebsiella 0.00011+0.00004 0.00026+0.0001 0.00001+0.00001 0.048 0.298 0.039 0.55
Lachnotalea 0.00059+0.00009 0.00035+0.00009 0.00014+0.00008 0.01 0.157 0.232 0.008
Lacrimispora 0.00056+0.00015 0.0003+0.00009 0.00008+0.00001 0.01 0.156 0.224 0.007
Lawsonibacter 0.78326+0.07654 0.97854+0.05095 0.42779+0.04105 <0.001 0.07 <0.001 0.002
Luxibacter 0.00005+0.00002 0.00007+0.00002 0.024 0.727 0.022 0.118
Massiliimalia 0.00054+0.00015 0.00157+0.00017 0.00003+0.00001 <0.001 <0.001 <0.001 0.036
Merdimonas 0.00013+0.00004 ND ND 0.001 0.002 >0.999 0.002
Mucispirillum 2.85145+0.64813 2.14127+0.33663 0.11829+0.10257 0.001 0.439 0.006 0.001
Muribaculaceae bacterium (no genus in NCBI) 1.37731+0.13964 0.94549+0.12529 1.3194+0.08399 0.039 0.054 0.083 0.937
Muribaculum 0.02347+0.00131 0.03872+0.00504 0.03374+0.00267 0.031 0.026 0.579 0.149
Natranaerovirga 0.00035+0.00006 0.00079+0.00019 0.00176+0.00039 0.007 0.499 0.049 0.007
Odoribacter 0.00016+0.00006 0.00018+0.00005 0.00104+0.00013 <0.001 0.978 <0.001 <0.001
Oscillibacter 0.98108+0.11104 1.22251+0.09204 1.89004+0.20204 0.002 0.509 0.014 0.002
Oscillospiraceae bacterium (no genus in NCBI) 2.00453+0.15707 2.20848+0.05381 1.60653+0.09879 0.003 0.393 0.003 0.049
Otoolea 0.00683+0.00057 0.00741+0.00048 0.0905+0.03182 0.012 >0.999 0.021 0.026
Parabacteroides 0.39545+0.05226 0.45501+0.07056 4.58344+0.39701 <0.001 0.985 <0.001 <0.001
Paramuribaculum 0.00126+0.00019 0.00189+0.00036 0.01578+0.00128 <0.001 0.855 <0.001 <0.001
Parasporobacterium 0.001028+0.000143  0.0015+0.000252 0.000007+0.000003 <0.001 0.171 <0.001 0.003
Parasutterella 0.00141+0.00015 0.00192+0.00026 0.231+0.04411 <0.001 >0.999 <0.001 <0.001
Peptococcaceae bacterium (no genus in NCBI) 0.30895+0.0277 0.32574+0.02324 0.2053+0.03047 0.014 0.906 0.016 0.049
Phocaeicola 0.85374+0.05582 0.62726+0.18032 0.04945+0.02432 0.001 0.386 0.007 0.001
Porphyromonadaceae bacterium (no genus in NCBI) 0.00175+0.00024 0.00284+0.00044 0.02945+0.00242 <0.001 0.873 <0.001 <0.001
Prevotella 3.23199+0.641 1.60038+0.41082 3.26332+0.34126 0.033 0.067 0.049 0.999
Provencibacterium 0.00201+0.00034 0.00127+0.00015 0.00064+0.00018 0.003 0.087 0.141 0.002
Pseudoflavonifractor 0.02489+0.00196 0.02605+0.00069 0.01115+0.00133 <0.001 0.824 <0.001 <0.001
Raoultibacter 0.000004+0.000003 0.000004+0.000004 0.000069+0.000008 <0.001 0.995 <0.001 <0.001
Robinsoniella 0.000001+0.000001 ND 0.000063+0.000017 0.001 0.995 0.002 0.004
Romboutsia 0.01419+0.00459 0.00074+0.00027 0.00011+0.00002 0.001 0.003 0.979 0.002
Roseburia 0.04084+0.00718 0.02202+0.00339 0.00351+0.00041 <0.001 0.019 0.016 <0.001
Ruminiclostridium 0.15258+0.0119 0.14365+0.00988 0.06813+0.00577 <0.001 0.784 <0.001 <0.001
Ruminococcus 0.01133+0.0003 0.01431+0.00203 0.05066+0.00673 <0.001 0.882 <0.001 <0.001
Sellimonas 0.00005+0.00001 0.00009+0.00002 0.00027+0.00006 0.005 0.774 0.018 0.006
Sodaliphilus 0.001+0.00026 0.00309+0.00041 0.01984+0.00198 <0.001 0.497 <0.001 <0.001
Sporofaciens 0.00936+0.0006 0.01869+0.00163 0.00817+0.00147 <0.001 0.001 <0.001 0.823
Staphylococcus 0.00005+0.00001 0.00003+0.00001 0.00242+0.00035 <0.001 0.998 <0.001 <0.001
Streptococcus 0.00346+0.00032 0.00359+0.00066 0.00098+0.0002 0.001 0.981 0.002 0.005
Subdoligranulum 0.00037+0.00005 0.00014+0.00003 0.00013+0.00004 0.003 0.007 0.987 0.005
Unclassified Actinobacteria 0.00046+0.00004 0.00051+0.00003 0.09412+0.03993 0.023 >0.999 0.037 0.047
Unclassified Actinomycetia 0.00105+0.00009 0.00099+0.00004 0.00042+0.00005 <0.001 0.791 <0.001 <0.001
Unclassified Alphaproteobacteria 0.00879+0.00399 0.00009+0.00004 0.00004+0.00001 0.014 0.024 >0.999 0.023
Unclassified Atopobiaceae 0.000001+0.000001 ND 0.000067+0.000014 <0.001 0.994 <0.001 <0.001
Unclassified Bacillaceae 0.0004+0.0001 0.00056+0.00007 0.00027+0.00004 0.03 0.298 0.023 0.403
Unclassified Bacillales 0.00011+0.00002 0.0002+£0.00002 0.00008+0.00002 0.001 0.018 0.001 0.478
Unclassified Bacteroidaceae 7.30373+0.21834 5.17476+0.96659 0.36864+0.14026 <0.001 0.072 <0.001 <0.001
Unclassified Bacteroidetes 0.10775+0.01291 0.11795+0.01334 0.03107+0.00228 <0.001 0.784 <0.001 <0.001
Unclassified Betaproteobacteria ND ND 0.00005+0.00002 0.029 >0.999 0.046 0.058
Unclassified Brachyspiraceae 0.00007+0.00001 0.00003+0.00001 ND <0.001 0.013 0.026 <0.001
Unclassified Burkholderiales 0.00008+0.00003 0.00005+0.00001 0.00244+0.00046 <0.001 0.996 <0.001 <0.001
Unclassified Campylobacteraceae 0.000131+0.00005 ND 0.000003+0.000002 0.005 0.008 0.995 0.009
Unclassified Candidatus Saccharibacteria 0.01435+0.00439 0.00015+0.00005 0.0064+0.00249 0.009 0.007 0.241 0.136
Unclassified Candidatus Sumerlaeota 0.00001+0.00001 0.00003+0.00001 ND 0.008 0.144 0.006 0.307
Unclassified Clostridia 0.81895+0.03998 0.62294+0.02742 0.49722+0.01846 <0.001 0.001 0.016 <0.001
Unclassified Clostridiaceae 0.05113+0.00969 0.05131+0.00485 0.02435+0.00339 0.009 >0.999 0.016 0.022
Unclassified Coriobacteriales ND 0.000001+0.000001 0.00005+0.000016 0.004 0.997 0.008 0.009
Unclassified Coriobacteriia 0.00071+0.00019 0.00053+0.00006 0.00442+0.00063 <0.001 0.948 <0.001 <0.001
Unclassified Desulfovibrionaceae 0.27295+0.02209 0.26309+0.02165 0.13265+0.0117 <0.001 0.93 <0.001 <0.001
Unclassified Eggerthellaceae 0.01418+0.00231 0.01043+0.00068 0.15153+0.02011 <0.001 0.976 <0.001 <0.001
Unclassified Eggerthellales 0.00008+0.00001 0.00006+0.00001 0.00049+0.00009 <0.001 0.978 <0.001 <0.001
Unclassified Enterobacterales 0.000859+0.000116 0.000594+0.000305 0.000003+0.000002 0.024 0.627 0.108 0.023
Unclassified Erysipelotrichaceae 0.006+0.00036 0.00858+0.00156 0.01479+0.00324 0.039 0.705 0.14 0.039
Unclassified Eubacteriales 8.53653+0.85154 10.59975+0.54184 7.38941+0.46826 0.006 0.084 0.005 0.42
Unclassified Muribaculaceae 0.44521+0.04164 0.42073+0.05555 0.90811+0.07894 <0.001 0.961 <0.001 <0.001
Unclassified Oceanospirillales ND ND 0.00004+0.00001 <0.001 >0.999 <0.001 <0.001
Unclassified Odoribacteraceae 0.08445+0.0092 0.08179+0.01703 0.02821+40.0071 0.008 0.988 0.017 0.017
Unclassified Paludibacteraceae 0.0001+0.00001 0.00005+0.00001 ND <0.001 0.012 0.007 <0.001
Unclassified Pasteurellales 0.00005+0.00002 0.00001+0.00001 ND 0.03 0.075 0.888 0.033
Unclassified Peptococcaceae 0.0009+0.00008 0.00123+0.0001 0.00068+0.00013 0.01 0.137 0.007 0.368
Unclassified Peptostreptococcaceae 0.00164+0.00056 0.00016+0.00004 0.00001+0.00001 0.002 0.007 0.923 0.003
Unclassified Porphyromonadaceae ND 0.000243+0.000049 0.000004+0.000003 <0.001 <0.001 <0.001 0.996
Unclassified Prevotellaceae 0.00014+0.00003 0.00036+0.00006 0.00019+0.00006 0.038 0.044 0.105 0.83
Unclassified Proteobacteria 0.03902+0.00157 0.04053+0.00319 0.0278+0.00469 0.044 0.954 0.052 0.11
Unclassified Pumilibacteraceae 0.00027+0.00004 0.00029+0.00008 0.00001+0.00001 0.004 0.964 0.006 0.013
Unclassified Selenomonadales ND 0.000073+0.000035 0.000001+0.000001 0.049 0.085 0.074 0.999
Unclassified Spirochaetaceae 0.00011+0.00004 0.00005+0.00001 0.00002+0.00001 0.037 0.162 0.611 0.031
Unclassified Sporomusaceae 0.00096+0.00011 0.00054+0.00017 0.00019+0.00011 0.005 0.113 0.177 0.004
Unclassified Sutterellaceae 0.0001+0.00002 0.00013+0.00001 0.00883+0.00161 <0.001 >0.999 <0.001 <0.001
Unclassified Tannerellaceae 0.00037+0.00004 0.00034+0.00003 0.0056+0.00099 <0.001 0.999 <0.001 <0.001
Unclassified Veillonellales 0.00005+0.00002 0.00002+0.00001 0.004 0.053 0.305 0.003
Varibaculum 0.000012+0.000003 0.00001+0.000003 0.000162+0.000046 0.002 0.998 0.005 0.007
Vescimonas 0.000061+0.000033 0.000008+0.000003 0.047 0.099 0.932 0.053




Table S4. Cecal organic acids
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One-way ANOVA

Tukey HSD p-value

Organic acid (mmol /kg feces) Sham Control PHGG p-value Sham vs Control Control vs PHGG Sham vs PHGG

Succinate 1.23+0.26 1.03+0.06 3.91+0.95 0.006 0.970 0.009 0.020

Lactate ND ND 33.07+£33.07 0.427 >0.999 0.482 0.513

Formate 2.16+0.16 3.71+£0.79 1.17+0.27 0.011 0.135 0.009 0.411

Acetate 43.27+1.63 44.11+4.62 46.16+9.88 0.953 0.996 0.973 0.953

Propionate 6.35+0.42 6.15+0.64 6.25+0.70 0.975 0.973 0.993 0.992

Butyrate 2.40+0.48 2.99+0.33 9.31+1.75 <0.001 0.928 0.003 0.002

Isobutyrate 1.10+0.06 1.48+0.16 0.66+0.13 0.001 0.133 <0.001 0.076

Valerate 0.25+0.14 0.004%£0.004 0.02+0.02 0.047 0.061 0.987 0.080

Isovalerate 0.22+0.07 0.05+0.03 0.06%0.06 0.077 0.098 0.991 0.121

ND = Not detected
Table S5. Bacteria with a-glucosidase gene (%) that significantly different between groups at genus level
One-way Tukey HSD p-value
Genus Sham Control PHGG ANOVA p-value Sham vs Control Control vs PHGG Sham vs PHGG

Acutalibacter 0.00033+0.00009 0.00036+0.00004 0.00353+0.0005 <0.001 0.998 <0.001 <0.001
Alistipes 0.00035+0.00006 0.00021+0.00006 <0.00001 <0.001 0.113 0.016 <0.001
Anaerocaecibacter 0.00022+0.00004 0.00028+0.00008 0.00002+0.00001 0.007 0.690 0.007 0.046
Angelakisella 0.00052+0.00015 0.00031+0.00008 0.0001+0.00003 0.024 0.280 0.272 0.019
Bacteroidaceae bacterium (no genus in NCBI) 0.01625+0.0034 0.00782+0.00215 0.01592+0.00194 0.047 0.079 0.076 0.995
Bacteroides 0.0099+0.00097 0.00997+0.00237 0.01792+0.00259 0.032 >0.999 0.050 0.061
Bifidobacterium 0.00033+0.00008 0.0001+0.00001 0.01299+0.00524 0.018 0.999 0.029 0.041
Clostridiales bacterium (no genus in NCBI) 0.00003+0.00001 0.00003+0.00001 <0.00001 0.003 0.621 0.016 0.004
Clostridium 0.00017+0.00004 <0.00001 <0.00001 <0.001 0.000 0.995 <0.001
Dorea 0.00657+0.00037 0.00686+0.00105 0.00289+0.00032 0.002 0.957 0.003 0.007
Eubacterium 0.00016+0.00009 0.00186+0.00048 0.00424+0.00082 0.001 0.147 0.026 0.001
Faecalibaculum 0.00034+0.00007 0.00023+0.00005 0.00149+0.00039 0.004 0.948 0.006 0.016
Flavonifractor 0.00011+0.00001 0.00006+0.00002 0.00005+0.00001 0.024 0.087 0.740 0.023
Lawsonibacter 0.00085+0.00012 0.001+0.00008 0.00044+0.00005 0.001 0.418 0.001 0.014
Muribaculaceae bacterium (no genus in NCBI) 0.00216+0.00038 0.00119+0.00022 0.00202+0.00015 0.032 0.043 0.072 0.918
Oscillibacter 0.00108+0.00014 0.00123+0.00015 0.00305+0.00037 <0.001 0.905 <0.001 <0.001
Oscillospiraceae bacterium (no genus in NCBI) 0.00307+0.00032 0.00352+0.00014 0.00185+0.00019 <0.001 0.342 <0.001 0.004
Otoolea <0.00001 <0.00001 0.00012+0.00004 0.004 >0.999 0.007 0.010
Parabacteroides 0.0005+0.00009 0.00061+0.00004 0.00836+0.00124 <0.001 0.995 <0.001 <0.001
Phocaeicola 0.01054+0.00033 0.00708+0.00155 0.00048+0.00028 <0.001 0.069 0.001 <0.001
Prevotella 0.00361+0.00069 0.00186+0.00049 0.00384+0.00036 0.028 0.077 0.034 0.950
Roseburia 0.00005+0.00002 0.00002+0.00001 <0.00001 0.033 0.339 0.289 0.026
Ruminococcus 0.00001+0 0.00003+0.00001 0.00017+0.00004 0.002 0.886 0.007 0.004
Unclassified Bacteroidaceae 0.01452+0.00046 0.00985+0.00175 0.0005+0.00024 <0.001 0.029 <0.001 <0.001
Unclassified Bacteroidales 0.01004+0.0016 0.0103+0.00164 0.00261+0.00026 0.001 0.989 0.002 0.004
Unclassified Bacteroidia 0.00006+0 0.00003+0.00001 0.00023+0.00006 0.003 0.877 0.004 0.015
Unclassified Clostridia 0.00121+0.00016 <0.00001 <0.00001 <0.001 <0.001 0.999 <0.001
Unclassified Clostridiaceae 0.00018+0.00006 0.00034+0.00005 0.00014+0.00003 0.021 0.090 0.021 0.806
Unclassified Eubacteriales 0.00441+0.00046 0.0058+0.0008 0.00985+0.00162 0.012 0.681 0.052 0.013
Unclassified Firmicutes 0.00007+0.00001 0.00009+0.00002 0.00354+0.00158 0.035 >0.999 0.054 0.065
Unclassified Muribaculaceae 0.00024+0.00004 0.00021+0.00004 0.0007+0.00018 0.012 0.980 0.017 0.033
Unclassified Oscillospiraceae 0.00038+0.00011  0.00032+0.0001  0.00003+0.00001 0.023 0.873 0.061 0.030

Table S6. Bacteria with mannan endo-$-1,4-mannosidase gene (%)

that significantly different between groups at genus level

One-way Tukey HSD p-value

Genus Sham Control PHGG ANOVA p-value _Sham vs Control Control vs PHGG Sham vs PHGG
Acutalibacter 0.00002+0.00001 0.0001+0.00003 0.00111+0.00036 0.006 0.971 0.013 0.012
Alistipes 0.00051+0.00014 <0.00001 <0.00001 <0.001 <0.001 >0.999 <0.001
Lachnospiraceae bacterium (no genus in NCBI) 0.00156+0.00019 0.00245+0.00055 0.04186+0.01058 0.001 0.995 0.002 0.002
Oscillospiraceae bacterium (no genus in NCBI) 0.00060+0.00009 0.00079+0.00006 0.00006+0.00005 <0.001 0.158 <0.001 <0.001
Prevotella 0.00251+0.00047 0.00123+0.00033 0.00264+0.00032 0.027 0.071 0.035 0.964
Unclassified Bacteria 0.00174+0.00036 0.00173+0.00035 0.00007+0.00005 0.001 >0.999 0.002 0.003
Unclassified Bacteroidaceae 0.00131+0.00018 0.00111+0.00043 0.00011+0.00007 0.019 0.870 0.053 0.026
Unclassified Bacteroidales 0.00717+0.00104 0.00708+0.00116 0.00202+0.0003 0.001 0.997 0.003 0.004
Unclassified Bacteroidia 0.00005+0.00001 0.00004+0.00001 0.00037+0.00003 <0.001 0.945 <0.001 <0.001
Unclassified Ktedonobacterales 0.00071+0.00010 0.00094+0.00014 <0.00001 <0.001 0.297 <0.001 0.001
Unclassified Lachnospiraceae 0.00540+0.00062 0.00369+0.00202 0.00003+0.00001 0.030 0.633 0.130 0.029
Unclassified Muribaculaceae 0.00017+0.00003 0.00013+0.00001 0.00059+0.00014 0.004 0.951 0.006 0.016
Unclassified Rikenellaceae 0.00029+0.00007 <0.00001 <0.00001 <0.001 <0.001 >0.999 <0.001




Table S7. Enriched KEGG pathways in microbiome of PHGG group.
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KEGG ID Description Gene Ratio _Rich Factor _Fold Enrichment _g-Value Count __GenelD
Upregulated pathway in PHGG group compared to the control
map00051 Fructose and mannose metabolism 10/348 0.089 3.485 0.010 10 K00966/K00011/K02798/K01218/K22252/K19956/K02771/K01623/K00844/K00045
map00061 Fatty acid biosynthesis 5/348 0.128 5.004 0.027 5 K00668/K11263/K18474/K11533/K00209
map00400 Phenylalanine, tyrosine and tryptophan biosynthesis 7/348 0.095 3.692 0.027 7 K01713/K04093/K00832/K18240/K00815/K04092/K13829
map00500 Starch and sucrose metabolism 10/348 0.094 3.682 0.007 10 K05988/K01179/K06896/K06859/K00690/K05343/K20108/K00844/K16147/K00692
K01654/K00966/K13015/K02472/K07102/K01097/K22252/K06859/K01452/K10046/K00844/K01233
map00520 Amino sugar and nucleotide sugar metabolism 15/348 0.096 3.753 0.001 15 /K15896/K08068/K00886
map00541 O-Antigen nucleotide sugar biosynthesis 8/348 0.081 3.154 0.032 8 K01654/K13015/K19180/K02472/K22252/K16704/K15896/K08068
map00550 Peptidoglycan biosynthesis 6/348 0.113 4.419 0.025 6 K21465/K08724/K11695/K05363/K21464/K12554
map00620 Pyruvate metabolism 12/348 0.090 3.522 0.004 12 K18118/K01512/K01596/K22211/K04073/K00156/K12972/K11263/K18930/K00245/K07248/K01595
map00640 Propanoate metabolism 8/348 0.082 3.219 0.029 8 K00048/K01903/K01720/K01902/K01692/K11263/K13921/K01965
" K01070/K05884/K12234/K11212/K08093/K03532/K22015/K01623/K03533/K05979/K14940/K07812
map00680 Methane metabolism 16/348 0.082 3.203 0.002 16 /KO1595/K19793/K14083/K18933
map00920 Sulfur metabolism 11/348 0.101 3.939 0.003 11 K00955/K00390/K01082/K08358/K17994/K17218/K21308/K16937/K07308/K16936/K08357
map00930 Caprolactam degradation 4/348 0.182 7.097 0.025 4 K01692/K01053/K06446/K01453
map01054 Nonribosomal peptide structures 6/348 0.118 4.592 0.025 6 K15664/K15668/K16095/K15654/K15662/K16129
" K00030/K18118/K00616/K01070/K01903/K06859/K01902/K11263/K08093/K01053/K22015/K01623
map01200 Carbon metabolism 19/348 0.052 2.032 0.027 19 /K00844/K00245/K01965/K01595/K14083/K00886/K00209
K00966/K05936/K02496/K01432/K01919/K05884/K12234/K20862/K11212/K02302/K18240/K13950
map01240 Biosynthesis of cofactors 26/348 0.069 2.706 <0.001 26 /K01053/K02858/K21479/K03635/K03146/K10046/K01113/K03638/K05979/K09882/K19793/K1415
3/K01440/K18933
. - - K01654/K00966/K19180/K07031/K02472/K07102/K15669/K01097/K22252/K16704/K13307/K10046
map01250 Biosynthesis of nucleotide sugars 17/348 0.081 3.145 0.001 17 K00844/K15896/K08068/K00886/K13311
map01503 Cationic antimicrobial peptide (CAMP) resistance 6/348 0.111 4.337 0.026 6 K01364/K07771/K03673/K14205/K13632/K18073
K07677/K08082/K01179/K07690/K02472/K07670/K09474/K07675/K11615/K07771/K03620/K07653
- /K02668/K07647/K11712/K20264/K08358/K07717/K07663/K11711/K20489/K19661/K03532/K1961
map02020 | Two-component system 46/348 | 0.092 3598 <0001 46 16/k10125/K07770/K14205/K07686/K13532/K00245/K01113/K03533/K08372/K10909/K11356/K180
73/K00371/K18351/K07673/K08357/K00370/K11622/K13040/K14987/K00990/K00692
" K10557/K11530/K01364/K10556/K10555/K20276/K10558/K06998/K01218/K08321/K20264/K03071
map02024 Quorum sensing 18/348 0.064 2.483 0.007 18 /K11216/K20333/K20489/K10909/K15654/K15852
map02025 Biofilm formation - Pseudomonas aeruginosa 8/348 0.089 3.470 0.025 8 K11912/K03651/K20971/K21022/K20997/K21019/K20968/K21005
map02060 Phosphotransferase system (PTS) 9/348 0.125 4.879 0.003 9 K02806/K02798/K02771/K20108/K02773/K02774/K02821/K11183/K02784
map04122 Sulfur relay system 5/348 0.172 6.730 0.012 5 K03636/K03635/K03638/K11996/K21140
Downregulated pathway in PHGG group compared to the control
map00052 Galactose metabolism 12/432 0.154 4.838 <0.001 12 K02082/K21621/K02747/K02746/K12111/K02745/K01631/K16370/K00917/K07406/K08302/K15778
map00130 Ubiquinone and other terpenoid-quinone biosynthesis 11/432 0.186 5.863 <0.001 11 K05928/K18285/K11783/K11782/K11785/K11784/K03182/K03186/K20810/K00355/K00568
. - . K12453/K12409/K12454/K10011/K15895/K15898/K15855/K15856/K15894/K13016/K15897/K00621
map00520 Amino sugar and nucleotide sugar metabolism 21/432 0.135 4.233 <0.001 21 K10012/K09001/K02473/K1688 1/K00884/K08679/K06118/K15913/K15778
map00541 0O-Antigen nucleotide sugar biosynthesis 11/432 0.111 3.494 0.005 11 K12453/K12454/K15895/K15898/K21379/K15856/K15894/K13016/K15897/K02473/K08679
map00564 Glycerophospholipid metabolism 11/432 0.096 3.008 0.017 11 K01114/K06132/K00894/K00113/K03735/K05929/K00112/K03736/K04019/K17830/K00111
. K17229/K15552/K17725/K17230/K02047/K02045/K02048/K15551/K02046/K10831/K00958/K07306
map00920 Sulfur metabolism 16/432 0.147 4.616 <0.001 16 /K00395/K11181/K11180/K00394
K05928/K15734/K03795/K18285/K11783/K11782/K11785/K10977/K08310/K11784/K03182/K03186
map01240 Biosynthesis of cofactors 29/432 0.077 2.432 <0.001 29 /K03153/K04032/K02170/K20810/K01906/K02191/K00002/K20967/K00128/K01772/K00355/K1354
1/K21063/K08679/K03148/K22225/K00568
. . . K12453/K12409/K12454/K10011/K15895/K16436/K15898/K21379/K15856/K12710/K15894/K13016
map01250 |Biosynthesis of nucleotide sugars 22/432 0104 3279 <0.0011 22| )15897/K00621/K09001/K02473/K00884/K08679/K06118/K15913/K13308/K15778
. K01114/K20374/K01318/K15656/K13815/K20531/K20485/K20484/K07813/K20483/K14645/K07715
map02024 | Quorum sensing 19/432 0-067 2111 0-025 19 |/K02490/K20345/K20344/K10917/K20342/K20266/K20533
map02025 Biofiim formation - Pseudomonas aeruginosa 137432 0.144 4.542 <0.001 13 7|<1111954ng1 1893/K11891/K11900/K11903/K11895/K21020/K06596/K21012/K02658/K20973/K10941
K07639/K03776/K07661/K00404/K07701/K15012/K11633/K11521/K07700/K02106/K13815/K07659
/K07785/K20485/K06596/K18866/K18444/K07783/K07792/K07654/K02658/K01034/K20484/K0103
map02020 Two-component system 52/432 0.104 3.277 <0.001 52 5/K18348/K18941/K11629/K07644/K13599/K13598/K07813/K20483/K11329/K18856/K13533/K077
77/K20973/K10941/K13587/K10943/K10682/K07664/K07715/K02490/K11616/K07638/K05966/K11
630/K11444/K02406/K07665/K07669
map02040 Flagellar assembly 7/432 0.127 4.002 0.025 7 K02393/K10941/K02424/K02394/K10943/K02386/K02406
map03070 Bacterial secretion system 11/432 0.149 4.674 <0.001 11 K02460/K02452/K11906/K11891/K11903/K11892/K02454/K03117/K03194/K03072/K02455
map04122 Sulfur relay system 5/432 0.172 5.421 0.026 5 K21028/K07236/K03148/K11179/K07235
map05111 Biofilm formation - Vibrio cholerae 12/432 0.113 3.560 0.003 12 K20959/K02460/K02452/K20956/K20965/K20962/K03087/K02454/K10941/K10943/K10917/K02455




